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ABSTRACT

High-throughput systematic evolution of ligands by exponential enrichment (HT-SELEX) is a development of 
SELEX which uses next generation sequencing to analyse the aptamer selection process. Computational tools 
have previously been developed specifically to analyse HT-SELEX data and assist in shortlisting aptamers most 
likely to have high affinity to the SELEX target(s). We have exploited a published HT-SELEX data set to assess 
the performance of six aptamer clustering methods and four methods to rank the clusters in their ability to 
shortlist the highest affinity aptamers. We found that methods which attempt to take into account second-
ary structure, in terms of its enrichment characteristics and complexity, did not perform as well as simpler 
methods, which cluster based on sequence alone and rank by a measure of the final absolute enrichment. 
We also demonstrate that analysis methods developed for amplicon metagenomics perform well on HT-SELEX 
data. Importantly, we note a lack of publicly accessible HT-SELEX/validation data despite numerous studies 
reporting the use of this technique, which hampers extensive comparative benchmarking. We implore the 
community to make data public to aid methodological advances in aptamer shortlisting and benchmarking.
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INTRODUCTION

The use of aptamers has increased dramatically in recent 
times (Zhou and Rossi, 2017). Aptamers are able to act anal-
ogously to antibodies; binding ligand molecules with high 
degrees of specificity and affinity (Hoinka et al, 2014). They 
are composed of single-stranded short nucleic acids, which 
fold upon themselves resulting in complex 3-D structures 
and produce their ligand specificity via shape recognition. 
Aptamers are generated using a technique known as the 
systematic evolution of ligands by exponential enrichment 
or SELEX (Tuerk and Gold, 1990). This is a sequential pro-
cess that requires multiple rounds of selection and starts 
with a highly heterologous pool of aptamers being exposed 
to the target ligand, adherent aptamers are retained and 

non-binders are removed. SELEX results in a library of 
aptamers that are able to bind with specificity and strength 
to their target(s), these are sequenced and can then be syn-
thesised and tested for their individual binding affinities. It 
is necessary to test the affinity of resultant aptamers as not 
all highly represented aptamers will bind the target (Tolle 
et al, 2014).

Traditionally, SELEX has been applied to relatively simple 
target ligands such as purified recombinant protein (Lakhin 
et al, 2013). These highly-homogenous targets generally 
yield numbers of aptamers in the range of one or two dozen 
at most. The sequencing of the final aptamer library could 
be facilitated using low-throughput sequencing approaches 
(e.g., cloning and Sanger sequencing). Recently the use of 
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complex targets has become more common, such as the 
whole bacterial or eukaryotic cells (Lakhin et al, 2013). 
Such ‘Cell-SELEX’ procedures can be useful as it allows the 
selection of aptamers without prior knowledge of specific 
target ligands. The complex nature of these targets, with 
hundreds or thousands of cell-surface moieties, will result 
in many more aptamers being selected for and retained 
over SELEX cycles compared to simpler targets, render-
ing low-throughput sequencing non-viable. Instead, next 
generation sequencing (NGS) platforms need to be utilised 
in a process known as high-throughput SELEX (HT-SELEX) 
(Kupakuwana et al, 2011).

HT-SELEX provides deep sequencing of the SELEX aptamer 
pools at any or all cycles of the process. This not only sup-
plies a larger number of candidates for testing, but also 
enables the analysis of the abundance of aptamer species 
from one cycle to the next - which can be used to reveal 
aptamers undergoing selection and/or containing desired 
structures. This process generates large data sets posing 
new challenges in analysis and interpretation. Hence, the 
overarching aim of HT-SELEX sequence analysis should be 
to provide a shortlist of aptamers that are most likely to 
be good candidates for testing target binding affinity. This 
is imperative as it is usually not possible to test more than 
a few dozen candidate aptamers due to the expense of the 
experiments.

Several different computational approaches have been 
designed specifically to assist in aptamer selection from 
HT-SELEX data (for a full review, see Kinghorn et al, 2017). 
These include, but are not limited to: AptaCluster (Hoinka 
et al, 2014); FASTAptamer (Alam et al, 2015); APTANI 
(Caroli et al, 2016) and AptaTRACE (Dao et al, 2016). 
Of these, AptaCluster and FASTAptamer provide meth-
ods to cluster aptamer reads in HT-SELEX data based on 
sequence similarity, whereas AptaTRACE and APTANI use 
a similar approach to identify conserved sequence motifs 
that define the secondary structures enriched over SELEX 
rounds, then build clusters that contain those motifs. In 
theory, the largest of these clusters would more likely con-
tain structural features that have high affinity to the tar-
get molecule(s). Collectively we refer to these as aptamer 
analysis methods.

Generally, following sequence quality control, the first 
step in HT-SELEX sequence analysis is clustering the 
sequences into groups. As this is a frequent procedure in 
bioinformatics, it is reasonable to suggest that other bio-
informatic, non-aptamer specific, analysis tools that clus-
ter sequences may be useful. In particular, we suggest that 
the algorithms developed for amplicon metagenomics (or 
collectively amplicon analysis methods), e.g., Uclust and 
Unoise, both parts of the Usearch package (Edgar, 2016) 
are particularly relevant. This is because HT-SELEX data 
has similarities to metagenomic amplicons in that reads 
are generally of a discrete and narrow size range and are 
produced by competitive PCR reactions, giving rise to sim-
ilar types and rates of errors. Furthermore, in later SELEX 
cycles, sequences form populations of varying sizes with a 
log-normal frequency distribution, as would be expected 
for metagenomic amplicon populations (Paulson et al, 
2013).

Among clustering and structural analysis there is the need 
for methods to be easily applied, computationally efficient 
and scalable to the potentially vast numbers of reads in a 
given HT-SELEX sequence data set. Despite the availability 
of several aptamer-specific analysis methods, to date no 
useful comparison of such programs, with respect to their 
ability to rank sequenced aptamers with known target 
affinities, has been conducted. Here, we present a compari-
son of shortlisting methods in terms of speed and accuracy, 
using the freely available programs: AptaCluster, FASTAp-
tamer, the Usearch programs: Uclust and Unoise, and a 
secondary structure clustering method developed for this 
study. We then assess the accuracy of different metrics to 
rank the order of clusters, such that high-affinity aptamers 
are most likely to be shortlisted. We note that there is a 
paucity of publicly accessible HT-SELEX sequence data and 
associated aptamer affinity data. This hampers efforts to 
conduct extensive comparative benchmarking, while also 
limiting the development of aptamer analysis best prac-
tices. Our results provide an important first step in the dis-
course regarding how best to analyse HT-SELEX data, whilst 
also highlighting the differences between some existing 
analysis methods. We conclude that the amplicon cluster-
ing methods are applicable to shortlisting aptamers from 
HT-SELEX data, but further investigation into their general-
isability is warranted.

METHODS

Data acquisition
Figure 1 shows an overview of the analysis process used. 
To compare the available aptamer selection methods, 
we required a data set with both NGS data and meas-
urements of an aptamers binding affinity to the target 
molecule (i.e., dissociation constant, Kd values). Twenty 
studies with HT-SELEX sequencing data are available on 
the NCBI short read archive (SRA), as of 20/3/2018. How-
ever, only one data set provides significant numbers of Kd 
data enabling its use as a benchmarking dataset – that 
published in Hoinka et al, 2015; and Levay et al, 2015 
(available via the NCBI SRA; BioProject PRJNA315881; 
Runs SRR3279660 and SRR3279661). The total number 
of reads per round was: round 2 = 2,644,594; round 3 = 
1,298,160; round 4 = 1,958,875; and round 5 = 5,746,926. 
Associated Kd data is available for 33 of the most abun-
dant aptamers selected in Hoinka et al, 2015 and Levay 
et al, 2015, hereafter these are referred to as the affinity-
scored aptamers (Table 1).

Aptamer selection approaches
Following NGS quality control (the effects of which we do 
not examine in this paper), HT-SELEX sequence analysis 
has two steps to produce a shortlist of candidate aptamers 
for validation: first - cluster together sequences based on 
similarity and count the size of clusters; and second - rank 
the clusters by using a metric that attempts to place aptam-
ers with desired binding properties at the top of the list 
(Figure 1), we used six different methods to do this. Note 
that a recent aptamer analysis package, APTANI (Caroli 
et al, 2016), was not included in this study because it would 
not operate on our Linux system due to technical problems 
despite repeated attempts.
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CLUSTERING METHODS

We used three aptamer specific clustering methods: FASTAp-
tamer (v1.03), AptaCluster and AptaTRACE (both imple-
mented by Aptasuite v0.4.5), and two amplicon clustering 
methods: Uclust and Unoise (implemented by USEARCH 
v10.0.240_i86linux64, Edgar, 2010; Edgar, 2016). We used 
default parameters for all methods, apart from those spe-
cifics described below. We used Uclust to cluster sequences 
and generate counts without error correction and used 
Unoise to do the same but with error correction. For Unoise, 
HT-SELEX reads were mapped to the ‘Zotu’ representative 
sequences using USEARCH’s ‘-otutab’ command to obtain 
counts. For all methods, identity thresholds of 97% and 90% 
were investigated, for the top 500 clusters. For FASTAptamer 
clustering, the options ‘-c 500’ and ‘-f 100’ were used to limit 
the total number of clusters to 500 and remove reads with 
fewer than 100 identical copies from the clustering process. 
All other clustering programs used default options and the 
total number of clusters was trimmed to the 500 largest.

Structure analysis
For structure-based clustering, we first used RNAfold (v2.4.1) 
(Lorenz et al, 2011) to generate secondary structures for 
reads (a single, minimum free entropy structure - using a sin-
gle possible structure greatly decreased computation time), 
then translated the resulting “dot and bracket” notation (see 
Figure 2) into a pseudo-sequence with three possible sym-
bols: G, C, and A, where ‘A’ stood for no structure present 
(‘dots’ in RNAfold notation); and ‘G’ and ‘C’ stood for paired 
forward and reverse bases respectively (brackets in RNAfold 
notation). The pseudo-sequences were then clustered as 
normal by Uclust at a clustering identity threshold of 97%.

Performance of aptamer selection approaches
For each clustering method, we tested five different 
metrics for ranking sequence clusters: counts (total 

abundance across all SELEX cycles); enrichment gradi-
ent (gradient of the abundances from 2nd to 5th cycle); 
absolute enrichment (between final (5th) and 4th cycle, 
expressed as the absolute difference in counts); propor-
tional enrichment (between final (5th) and 4th cycle, 
expressed as the proportional change); and percentage 
of hairpin tips (HTP) - a measure of secondary structure 
complexity as detailed below and in the Supplementary 
material.

We explored whether secondary structure alone could 
predict binding affinity. To do this, we devised measures 
to represent the complexity of the secondary structures 
of the 33 affinity-scored aptamers. By applying regu-
lar expressions to the RNAfold “dot and bracket” nota-
tion (described above), we characterised four motifs 
(illustrated in Figure 2). For each structural property, we 
calculated the number of times they occur, the average 
size of the motif(s), and the total size of the motif(s). 
We then correlated these measures with the Kd values. 
We applied a standardisation of the best performing 
measure (HTP, or the percent of the molecule contain-
ing hairpin tips) to the top 500 largest clusters, effectively 
re-ranking the top 500 most abundant clusters by this 
complexity metric. The RNAFold program has the poten-
tial to produce multiple structures for a given sequence 
depending on parameters such as temperature, as such 
we explored the impact of altering temperature on the 
33 affinity tested aptamers to temperatures of 21, 26, 
31 and 37 degrees. Results (shown in supplementary 
Table 1) showed, broadly speaking, little difference in 
the correlation between any of the predicted structural 
features (Figure 2) and binding affinity. As such default 
parameters were subsequently used.

To assess the performance of combined clustering and 
ranking methods, the affinity-scored aptamers with Kd 

Figure 1. Diagram showing the analysis process.
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values were sorted from best to worst binding affinity 
(lower the Kd the better the binding) and this list was com-
pared to the ranking of the top 500 largest clusters from 
each of the six shortlisting methods. The rank of each 
affinity-scored aptamer in each shortlisting methods’ 
clusters was established by using a Python search script 
that enabled up to five bp mismatches (no more than 
two were observed in practice). We then assessed per-
formance of each shortlisting method based on their rank 
of affinity-scored aptamer compared to the Kd using both 

Spearman’s rank correlation, rs, and Pearson’s correlation 
r and the number of ‘good’ binders (Kd < 100) observed 
in the top 10 (of the 500) of each shortlisting methods 
aptamer clusters (henceforward referred to as the ‘top10’ 
measure).

To ensure the ability to re-run this analysis in its entirety, 
allI scripts and analysis pipelines used are available via 
the GitHub repository: https://github.com/bioinformatics-
deakin/htselex2017.

Table 1. Comparison of aptamer sequence clustering and ranking methods to binding data (Kd, nM). For each method’s clustered and 
sorted data, ‘count’ columns show the rank position of each aptamer in the top 500 largest clusters by cluster size; and ‘Enr.’ shows 
the rank position of each aptamer when the clusters are sorted by their change in enrichment between 4th and 5th rounds of SELEX. 
If an aptamer was not found then a rank of 500 was used. The ‘Top 10 correct’ value is the number of strong binding aptamers (Kd 
< 100 nM) that were ranked in the top 10 (therefore higher value is better, range = 0–10). rs = Spearman’s correlation; r = Pearson’s 
correlation. Analysis time is shown in hours.

Uclust 97% Unoise 97%
Structure 
97%*

AptaCluster 
3 bp max. diff.

Fastaptamer  
97% AptaTrace

Aptamer ID Kd rank count Enr. count Enr. count Enr. count Enr. Count Enr. na
L462 2 1 15 11 14 10 22 24 18 15 18 15 15
L464 4 2 22 38 21 35 30 101 28 214 28 106 30
L455 4 3 31 15 30 14 54 37 38 27 38 25 500
L454 8 4 16 9 15 8 20 15 16 11 15 11 500
H33 10 5 55 20 50 18 115 70 148 99 120 73 112
L463 12 6 30 41 27 38 47 110 34 186 34 100 38
H4 18 7 11 7 10 6 10 7 11 7 11 7 500
H12 20 8 18 13 17 12 23 21 19 17 19 17 16
H22 20 8 33 31 32 27 50 109 43 146 42 89 50
H30 25 9 48 19 44 17 104 62 115 74 98 59 85
H0 25 9 1 1 1 1 1 1 1 1 1 1 1
L465 25 9 25 549 24 443 33 418 29 481 30 304 48
L418 35 10 14 12 13 11 25 25 15 16 16 16 500
L413 40 11 19 111 18 130 26 152 23 273 23 118 22
H6 50 12 8 480 7 499 8 257 8 408 8 233 7
H3 60 13 5 6 5 5 5 6 6 6 6 6 5
H2 65 14 4 3 4 3 4 4 4 4 4 4 4
H8 80 15 12 8 11 7 12 11 12 8 12 8 8
L420 80 15 28 21 28 19 42 81 36 92 36 68 34
H40 120 16 66 24 61 21 146 90 186 139 141 87 34
H1 120 16 3 2 3 2 3 2 2 2 2 2 146
L412 120 16 32 547 31 491 56 474 42 467 41 298 2
H14 123 17 13 430 12 458 21 178 17 284 17 121 500
H16 375 18 17 469 16 457 19 496 20 487 20 309 19
H7 375 18 10 14 9 13 9 30 9 21 9 21 26
H9 375 18 9 521 8 500 11 366 10 446 10 243 9
H20 375 18 20 474 19 493 28 427 24 486 24 308 12
L409 500 19 26 372 29 422 55 398 44 439 43 235 32
H26 500 19 29 455 26 497 40 495 37 492 37 265 122
L417 500 19 27 71 25 64 41 113 31 285 31 122 88
H5 500 19 7 285 6 498 7 299 7 429 7 215 35
H15 500 19 21 35 20 33 29 128 25 147 25 90 6
H24 500 19 23 488 22 496 34 454 27 491 27 312 25
rs -0.13 0.49 -0.12 0.54 -0.12 0.52 -0.10 0.52 -0.10 0.52 -0.31
r -0.07 0.47 -0.06 0.55 -0.10 0.60 -0.12 0.60 -0.12 0.60 -0.27
Top 10 correct 4 6 5 7 5 4 4 5 4 5 5
Analysis Time 75 3 2 1 1 11

*Structure clustering was performed on one million subsampled reads



40

©The Author(s) | Aptamers | 2018 | Volume 2 | 36–44 | OPEN ACCESS | ISSN 2514-3247

RESULTS AND DISCUSSION

HT-SELEX analysis approaches primarily aim to inform 
the selection of high affinity and target-specific candidate 
aptamers before experimental validation and downstream 
application (Kinghorn et al, 2017). The validation of candi-
dates is still essential because not all candidate aptamers 
will have the desired affinity or specificity, despite poten-
tially being highly represented in the HT-SELEX libraries. 
Validation cannot be avoided, is time consuming and gen-
erally requires the modification of the synthesised aptam-
ers with various functional groups, greatly increasing cost. 
Accordingly, analysis methods most likely to shortlist func-
tional aptamers are of great benefit and importance.

We compared the shortlisting accuracy and speed of HT-
SELEX sequence data clustering and ranking methods, 
including analysis methods and a structural clustering in 
order to find those that provide the highest likelihood of 
identifying high affinity aptamers for subsequent valida-
tion. It was our intention to undertake this analysis using 
multiple HT-SELEX datasets, but to do this it required both 
sequence and associated binding affinity data. To our dis-
may we only located one such dataset. Most published 
studies describing HT-SELEX data available on the SRA 
database (20 datasets) reported only a handful (< 10) of 
aptamer binding affinities if any at all. We also encoun-
tered studies within the literature that utilised HT-SELEX 
but made no mention if the sequencing data had been 
deposited. The lack of publicly deposited data and/or lack 
of reported binding affinities represents a hitherto unrec-
ognised problem within the field that could be addressed 
with a dedicated online repository for HT-SELEX, containing 
data such as binding affinities and NGS reads. The adoption 

and use of a dedicated repository could, in our opinion, 
represent best-practice for the field.

An ideal aptamer can bind to a target with high affinity to 
form aptamer-target complexes. These complexes happen 
as a result of the conformations assumed by the macromol-
ecules, and the way in which these conformations interact 
in real space. Therefore, one would expect that the primary 
sequence of an aptamer alone may not sufficiently explain 
whether a sequence preferentially binds to a target. While 
the analysis of HT-SELEX makes use of the abundances of 
unique sequence clusters (i.e., after each round of SELEX) 
to prioritise high affinity aptamers, it follows that the inclu-
sion of higher-order structural information could augment 
the interpretation of these results. To explore this possibil-
ity, we used regular expressions to procedurally character-
ise aptamer complexity, then ranked aptamers independent 
of any HT-SELEX results.

The Usearch program provides a clustering algorithm, 
Uclust, that is fast, accurate and precise that could pro-
vide an alternative to AptaCluster or FASTAptamer. Unoise 
identifies Illumina sequencing (or PCR) errors in reads and 
corrects them, producing a list of ‘Zotus’ (zero radius opera-
tional taxonomic units). The program also implements PCR 
chimera (heteroduplex) removal, which may alleviate some 
of the potential errors that occur in the SELEX procedure. 
Following de-noising, reads are then mapped on to the set 
of Zotus with a predefined similarity threshold, e.g., 97%, 
to provide counts of each Zotu over SELEX cycles. This map-
ping process is considerably faster than clustering algo-
rithms and provides a means to count the abundance of 
all available sequences in reference to a relatively shortlist 
of Zotus, while also correcting potential errors. However, 

Figure 2. A 2D visualisation of the aptamer L454, as rendered by the ViennaTools command line RNAfold software (using default 
parameters). The diagram shows the four secondary motifs used to procedurally characterise aptamers by secondary structure; lead, 
lag, hairpin and hairpin tip. The lead is the series of unpaired bases at the 5’ end of the transcript shown in pink. The lag is the series 
of unpaired bases at the 3’ end of the transcript in blue. The hairpin is the series of bases that occur between the first closed pair. The 
hairpin tip is the series of unbound bases between the last closed pair. Below, the primary sequence and the secondary sequence (in 
dot-bracket notation) for L454 is provided.
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these corrected errors may contain random PCR substitu-
tions that may or may not contribute to improved aptamer 
binding - but if these errors do contribute to such, we 
would expect them to persist in later cycles and grow into 
separate Zotus that will still be detected by Unoise.

Performance of complexity measures
Table 2 shows an example of the correlation of 8 measures 
of complexity with Kd values. Only percentage of the total 
length that were hairpin tips (HTP) showed moderate corre-
lation with aptamer rank. This would suggest that the more 
free nucleotides there are on the exposed end of the loop-
structure (or the more loop-structures there are in total), 
the less affinity the aptamer has to its target. Given this 
moderate correlation it was decided to additionally apply 
the HTP measure to the subsequent clustering methods to 

investigate its predictive potential in regards to selecting 
‘strong binding’ aptamers with this dataset.

Performance of clustering and ranking methods
To score the performance of each clustering method and 
ranking combination we chose the ‘top10’ as our primary 
measure, combined with both Spearman’s rank correla-
tion compared to the Kd rank (rs), and Pearson’s correlation 
compared to the Kd value. Table 1 shows the rank position 
of each affinity-scored aptamer in the top 500 largest clus-
ters for each of the six clustering methods and the two best 
ranking methods: total count and absolute enrichment 
(count difference between final two SELEX cycles) (full 
results including all other ranking methods can be found in 
supplementary Table 2). The best performance (according 
to our primary measure) was shown by Unoise (clustered 

Table 2. Complexity scores used to rank aptamer clusters applied to the published aptamers with Kd values using default settings for 
the RNAfold program.

Aptamer  
ID

Kd  
(nM)

Lead  
Length  
(bp)

Lag  
Length  
(bp)

Hairpin  
Tips  
Total

Hairpin  
Tips Length  
Mean (bp)

Hairpin  
Tips  
Total (%)

Hairpins  
Total

Hairpins  
Length  
Mean (bp)

Hairpins  
Total (%)

L462 2 1 3 2 3.50 8 2 36.50 88
L464 4 17 3 2 5.50 13 2 13.00 31
L455 4 0 3 2 8.50 20 2 37.50 90
L454 8 24 5 1 6.00 7 1 52.00 63
H33 10 4 3 2 4.00 10 2 26.00 63
L463 12 2 1 3 9.67 35 3 23.67 86
H4 18 0 3 2 3.50 8 2 37.00 89
H12 20 21 4 1 5.00 6 1 56.00 67
H22 20 18 2 1 3.00 4 1 61.00 73
H30 25 3 10 1 6.00 7 1 68.00 82
H0 25 14 3 4 4.00 19 4 14.00 67
L465 25 2 1 3 10.33 37 3 23.67 86
L418 35 3 10 1 5.00 6 1 68.00 82
L413 40 17 1 3 9.33 34 3 16.33 59
H6 50 0 3 2 9.50 23 2 37.00 89
H3 60 23 2 1 3.00 4 1 56.00 67
H2 65 0 3 2 7.00 17 2 37.00 89
H8 80 16 4 1 14.00 17 1 61.00 73
L420 80 2 1 3 4.67 17 3 23.67 86
H40 120 1 1 2 7.50 18 2 37.50 90
H1 120 0 1 3 5.67 20 3 25.00 90
L412 120 1 11 2 4.00 10 2 28.00 67
H14 123 2 1 3 6.33 23 3 23.67 86
H16 375 2 1 3 6.33 23 3 23.67 86
H7 375 8 0 2 6.00 14 2 30.00 72
H9 375 9 2 2 5.50 13 2 28.50 69
H20 375 2 1 3 11.00 40 3 23.67 86
L409 500 0 11 1 7.00 8 1 70.00 84
H26 500 2 1 3 14.33 52 3 23.67 86
L417 500 0 9 2 13.00 31 2 33.00 80
H5 500 2 1 3 10.33 37 3 23.67 86
H15 500 2 1 3 11.67 42 3 23.67 86
H24 500 6 3 3 4.00 14 3 19.33 70
rs -0.22 -0.31 0.30 0.39 0.41 0.30 -0.15 0.14
r -0.31 -0.02 0.27 0.42 0.47 0.27 -0.21 0.19
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at 97% identity) combined with absolute enrichment rank-
ing (top10 = 7; rs = 0.54; r = 0.55). The second best was 
Uclust (clustered at 97% identity), also combined with 
absolute enrichment ranking of aptamers (top10 = 6; rs = 
0.49; r = 0.47). Several other methods (such as AptaClus-
ter, AptaTRACE and FASTAptamer) also ranked four or five 
of the strong binders in their top 10 candidates, indicating 
that there was little difference between these selection 
methods. Our results are congruent with another study 
that noted the enrichment method produced the best 
results for ranking clusters (Hoinka et al, 2015), although 
the latter used proportional enrichment, rather than abso-
lute counts.

We found that proportional enrichment was inferior to 
absolute enrichment scores - being more susceptible to 
ranking clusters with low absolute numbers (supplemen-
tary Table 2). This finding is further supported when we look 
at the number of ‘weak binders’ (Kd > 100 nM) that ranked 
within the top 10 - effectively a measure of false positives. 
Across all clustering methods, when total counts were 
used, between three and four ‘weak binders’ were present 
among the top 10 clusters (supplementary Table 2). Impor-
tantly, in all examples, this number was reduced when the 
absolute enrichment ranking method was used, with only 
the same single weak binder being assigned to the top 
10 in all cases (H1). Not only does this support the use of 
absolute enrichment ranking for aptamer selection but it 
further underlines the importance of sequencing multiple 
rounds of SELEX selection, not just the terminal round.

Of the other ranking methods used to score clustering 
approaches; total count, proportional enrichment, and 
percentage of hairpin tips (HTP) performed less well (sup-
plementary Table 2). HTP and proportional enrichment 
were consistently the poorest performing ranking meth-
ods (both only ranking one strong binder in the top ten of 
the Unoise analysis). Clustering based on secondary struc-
ture did not perform better than that based on sequence: 
AptaTRACE and our own structure clustering methods 
achieved five of the ‘strong’ binding aptamers in their top 
10 and rs coefficients of: AptaTRACE, rs = -0.31; structure, 
absolute enrichment, rs = 0.52; structure, counts, rs = -0.12. 
Clusters based on secondary structure contained negligible 
sequence variation (supplementary data; Table 3). Average 
sequence divergence of the 500 largest clusters was 1.5% 
(s.d. = 3.4%). Five sequence variation outliers were present 
with divergences ranging from 32% to 35% but their larg-
est cluster size was 114 and none of them contained the 
affinity-scored aptamers.

We found that AptaTRACE was among the lowest perform-
ing methods at shortlisting aptamers with this dataset. It 
took approximately four times longer to run than the Unoise 
method (see below) and although it managed to rank five 
of the ‘strong’ binders in its top 10, it also failed to rank 
four of the ‘strong’ within its top 500 and had the poorest rs 
coefficient (-0.27, enrichment) of any method. AptaTRACE 
does not produce data for each cycle, but rather identifies 
clusters that contain structural motifs that undergo posi-
tive selection over each SELEX cycle (Dao et al, 2016) and 
reports the count observed in the last cycle where the clus-
ter was observed. This means that the absolute enrichment 

ranking could not be applied to AptaTRACE to rank the clus-
ters - which may have improved the shortlist it provided. 
Uclust performed moderately well, however, it is only prac-
tical to run on sub-sampled data due to the required CPU 
time on the full data set (75hr).

Clustering by predicted secondary structure alone did not 
improve the aptamer shortlist. We expected that aptam-
ers with very similar structures could arise from different 
sequences during the SELEX process – akin to convergent 
evolution. However, we observed that only the smallest 
clusters contained appreciable sequence variation - mean-
ing that in this experiment at least, secondary structure 
selection remained coupled to sequence selection. This 
could be a consequence of the initial sequence library not 
containing enough sequence variants of each potential 
structure. If so, this negates the utility of structural cluster-
ing to rank aptamers. Since the global secondary structure 
of an aptamer can drastically change with a single base 
change, we included the primers in structure prediction on 
the grounds that these primers are present in the sequence 
during SELEX.

Additional considerations
Clustering approaches are computationally demanding 
for large data sets like those produced in HT-SELEX (Cole-
man et al, 2000). As such, we compared the computational 
demand (measured as CPU hours) for all of the five dif-
ferent methods, with both the full data set (11,648,555 
reads) and a subsampled set containing one million reads. 
The computational demand of clustering methods varied 
considerably, however, note that the CPU time required 
by ranking methods was negligible (seconds) compared to 
the clustering step. With a 12 CPU (Intel Xeon E5–2680 v3), 
2.5 GHz computer with 132 GB RAM, Uclust (97% identity) 
took 75hr to complete clustering of the full data set, and 
1hr 27min to process the subsampled data set. Aptasuite 
(which generated AptaCluster and AptaTRACE results) took 
one hour to generate AptaCluster results on the full data-
set, and 11hr on the full data set to generate AptaTRACE 
results (1hr 30min on the subsampled set). Structural clus-
tering was not attempted on the full data set, due to the 
length of time required for its Uclust step (75hr), and took 
1hr 54min for secondary structure prediction and cluster-
ing on one million subsampled reads. Unoise (de-noising 
and Zotu mapping) took 2hr 54min on the full data set 
(subsampling not deemed necessary due performance 
speed). Aptasuite therefore demonstrated that its cluster-
ing algorithm was 6.8x faster than Uclust. However, when 
Uclust was applied to AptaCluster clusters, new clusters 
were found: using one million of the top AptaCluster rep-
resentative sequences 75 further sequences were added to 
the largest cluster and a further 15896 clusters were given 
at least one new member; demonstrating that AptaCluster 
may trade some precision for speed. All time comparisons 
are shown in Table 1. Uclust, although it performed well, 
proved impractically slow to cluster the complete data set 
compared to AptaCluster, which was the fastest clustering 
algorithm. However, Unoise, including the mapping of all 
reads to Zotus, was sufficiently fast to be practical to use on 
the full data set. We limited the number of CPUs employed 
to a reasonable level (12) that would be commonly available 
to researchers with access to cluster computers. However, 
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Unoise and AptaCluster could be run on a desktop PC with 
e.g. four CPUs within a reasonable length of time (nine 
and three hours respectively) on this size of data set. The 
FASTAptamer program performed quickly (1hr), but only 
following the addition of limiting parameters to reduce the 
number of input de-replicated reads and total number of 
clusters.

There are additional considerations that must be taken into 
account when using FASTAptamer and AptaCluster. These 
programs cluster sequences within the individual rounds 
and not across all rounds (as done by Uclust and Unoise). 
This has the effect that some clusters will be present in one 
round but not another, which may lead to the loss of poten-
tial aptamers in the ranking step because it prevents the 
measurement of enrichment between rounds - although 
this is only likely with smaller clusters that are less likely 
to contain good binders’ sequence. This behaviour is the 
likely reason why the performance of FASTAptamer and 
AptaCluster were nearly identical.

Subsampling the full sequence data set to one million reads 
had little apparent effect on the performance of each method 
of selecting aptamers compared to using the full data set. For 
example Uclust (97% identity), with all data, produced top10 
= 6 and rs = 0.49, compared to top10 = 5 and rs = 0.48 when 
one million reads were sampled (supplementary Table 3). 
It appears subsampling to one million reads did not greatly 
affect the observed aptamer ranking, it is possible that it 
could increase the error in enrichment calculation in smaller 
clusters or be a consequence of the dataset on which we 
performed the analysis. Therefore, we would suggest careful 
exploration of subsampling on a case by case basis.

It is important to acknowledge a limitation of this study 
- the number of validated aptamers available for bench-
marking. An idealised data set would have data on the 
binding properties of all aptamer candidates, however, 
this is unfeasible due to the high cost of performing such 
experiments. Hence, when applying our top10 measure, 
in all cases, some of those top ten were uncharacterised 
aptamers. It is beyond the scope of this study to validate 
all of these additional aptamer candidates, so it is difficult 
to determine if they constituted strong or weak binders. 
As such, some caution must be taken when interpreting 
these results. However, using this data set, we can state 
that Unoise and Uclust performed at least as well as Apta-
Cluster, FASTAptamer and AptaTRACE in predicting and 
ranking the aptamers for which Kd values were available. 
Whilst caution must be taken extrapolating the results of 
this study broadly we see no reason why the use of analysis 
tools such as Uclust and Unoise on other HT-SELEX datasets 
would not be similarly useful.

In future, it would be greatly beneficial for the aptamer 
researching community to access all such available data 
from a dedicated online repository, including metadata 
such as SELEX conditions. Although at present it is difficult 
to validate very large numbers of aptamers from HT-SELEX, 
it is likely that solid-state affinity testing methods, such as 
surface plasmon resonance (Rubio et al, 2016), will ena-
ble high-throughput validation - which will greatly assist 
future analytical methods, our understanding of the SELEX 

process, and the more rapid and efficient development of 
aptamers.

CONCLUSIONS

We found that the use of two analytical pipelines, Unoise 
and Uclust, originally designed to analyse amplicon 
metagenomic data, performed at least as well for shortlist-
ing HT-SELEX data than a number of aptamer-specific pipe-
lines. In particular, Unoise produced promising results and 
did so in a short timeframe comparable to the most rapid 
of the aptamer-specific methods tested here. Methods that 
used the secondary structure to cluster and/or rank aptam-
ers (APTAtrace, structure clustering, complexity score rank-
ing) did not perform as well in this study. This suggests that 
it may not be worth the greater computing effort that these 
methods require. However, given that our comparison is 
based on the only currently available validation HT-SELEX 
set, we are unable to provide conclusive recommenda-
tions for the choice of one shortlisting method over any 
other. Yet, we provide an important start to the discourse 
on method suitability and clearly demonstrate that Usearch 
clustering methods are applicable to shortlisting aptam-
ers from HT-SELEX data, but further investigation into their 
generalisability is warranted. It is important to note that the 
proportional enrichment ranking, as previously suggested 
by Hoinka et al (2015), performed consistently poorly (albeit 
on the single dataset analysed here). We recommend the 
use of the consistently high performing metric, absolute 
enrichment between the last two SELEX cycles, instead. The 
lack of multiple HT-SELEX experiments with validation bind-
ing affinities (for both strong and weak binders) that are 
publically available greatly hampers community efforts to 
conduct extensive comparative benchmarking, limiting the 
development of aptamer analysis best practices. We advo-
cate for, and implore the community to make such data pub-
lic to aid methodological advances in aptamer shortlisting.
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